BitcoinBridge.app: Bridging Bitcoin, Enhancing
Efficiency

Electron Team

September 3, 2025

1 Introduction

Bitcoin, as the cornerstone of the crypto ecosystem, boasts the largest market capital-
ization and user base. However, moving BTC across different blockchains remains an
expensive and inefficient process. Current bridging solutions typically incur transaction
fees of approximately 1% per swap, a prohibitive cost in a maturing market. For active
participants, these fees accumulate rapidly: a $100,000 transfer alone loses $1,000, and
frequent bridging (e.g., 20 times annually) could deplete up to 20% of a user’s portfolio.

Existing Bitcoin bridges face two critical limitations. First, they have slow and in-
secure expansion because they rely on custom smart contracts for each new chain. This
leads to long rollout times, expensive audit cycles, and an expanding security attack sur-
face. Second, they suffer from poor capital efficiency due to fragmented liquidity pools.
This inefficiency forces bridges to offer inflated Annual Percentage Yields (APYs) to
attract idle capital, which increases user fees and limits scalability.

BitcoinBridge.app was engineered to fundamentally transform this landscape, draw-
ing on Electron Team’s extensive, long-standing expertise expertise in Zero-Knowledge
Proofs (ZKPs) and Trusted Execution Environments (TEEs). By integrating TEEs,
threshold cryptography, and a proprietary dynamic liquidity engine, BitcoinBridge.app
directly addresses the core challenges inherent in existing BTC bridges. This architecture
eliminates the need for individual smart contracts on every chain by executing all bridge
logic securely within TEESs, simplifying deployment across any blockchain.

2 Problem Statement

Existing cross-chain bridges face slow and costly expansion due to their reliance on custom
smart contracts for each new chain. This necessitates lengthy development and audit
cycles, limiting scalability and increasing security risks.

3 Bridge Protocol Overview

The bridge operates with an Externally Owned Account (EOA) on each supported
blockchain. To initiate a cross-chain transfer, a user first sends their desired asset to
the designated EOA on the source chain. Subsequently, they sign a message detailing the
bridge specifics, such as the destination chain and asset. For Bitcoin as the source chain,
this secondary signing step is not required.

While the EOA manages user assets and facilitates cross-chain transfers, relying on a
single private key for transaction signing introduces an obvious security vulnerability and
a central point of failure. To mitigate this risk, the bridge employs a robust combination
of Trusted Execution Environments (TEEs) and a Threshold Signature Scheme.

3.1 What is a {t,n}-threshold ECDSA scheme?

A {t,n}-threshold ECDSA scheme allows a group of 'n’ participants to collectively gen-
erate a valid ECDSA signature, provided that at least 't 4+ 1’ of these participants collab-
orate. This means no single party has full control over the signing key.

3.2 What is a TEE?

A Trusted Execution Environment (TEE) is like a secure, locked box inside your com-
puter’s main chip. It ensures that certain programs and their data are run exactly as
intended, without any tampering. Additionally, it keeps sensitive information hidden
and protected from anything else on the computer, even if other parts of the system are
compromised.

4 Solution Overview

In this architecture, each of the 'n’ participants operates a client inside a dedicated
Trusted Execution Environment (TEE). Each client is provisioned with a unique, user-
specific private key share, which remains inaccessible and unreadable by any party, in-
cluding the user themselves.

When a transaction requires signing as part of the bridging process, each participant’s
TEE-secured client autonomously generates its individual signature share. These shares
are then securely collected by one of the user’s clients and combined within a secure
environment to reconstruct the complete, valid transaction signature. Prior to final sub-
mission, the transaction’s details are rigorously verified for correctness, ensuring integrity
before broadcast.

5 BitcoinBridge.app Achievements

The bridge delivers unparalleled security, efficiency, and scalability through its innovative
design:

e Enhanced Security & Integrity: Parties cannot collude to forge or send fraud-
ulent transactions. This is guaranteed because private key shares are inaccessible
within TEEs, and every transaction undergoes a rigorous correctness check before
being signed and sent.

e High Availability: The system maintains continuous operation even if some nodes
go offline, thanks to the inherent fault tolerance provided by the Threshold Signa-
ture Scheme.

e Rapid Expansion: The bridge can expand to support new blockchain networks
in approximately 2 days, eliminating the lengthy development and audit cycles
associated with traditional smart-contract-based bridges.

e Drastically Reduced Fees: Users benefit from transaction fees of just 0.1%,
representing a 10x improvement compared to prevailing industry standards.

e High Volume Capacity: The platform is engineered to efficiently handle sub-
stantial demand, equipped by a proprietary liquidity engine to manage over $1.5
billion in monthly volume.

Appendix A Threshold ECDSA Mathematical De-
tails

ECDSA is a digital signature scheme used by both Ethereum and Bitcoin for signing
transactions. We here lay out the core mathematics behind a {t, n}-threshold ECDSA
scheme. We first review Shamir secret sharing and multiplicative-to-additive share con-
version, then describe key generation and distributed signing.

Appendix A.1 Shamir secret sharing

The underpinning concept here is that of polynomial interpolation.

A polynomial of degree t can be defined uniquely by any set of t + 1 points on it.
For instance, y = 3x? + Tz + 4 can be recovered uniquely by three points: (—1,0), (0,4),
(2,30).

Now, let there be a dealer who constructs a polynomial of degree ¢t with random
coefficients taken from some finite field.

f(x) =sk+ayzx+ -+ a2’ (1)

The dealer prepares the values (1, f(1)), (2, f(2)),..., (n, f(n)) and shares them with the
n players, respectively. Each player receives their share and learns nothing about the other
shares. Any t players can now jointly reconstruct the polynomial, thereby recovering the
secret sk.

Appendix A.2 Feldman’s verifiable secret sharing (VSS)

Feldman’s Verifiable Secret Sharing (VSS) allows a dealer to distribute shares of a secret
in such a way that participants can verify the integrity of their shares without revealing
the secret itself. This ensures that the dealer has distributed valid shares and prevents
malicious players from disrupting the secret reconstruction process.

To achieve this verifiability, the dealer first commits to the coefficients of the polynomial
used for Shamir’s Secret Sharing. For a polynomial f(x) = sk+ajz+- - -+a,z, the dealer
computes and broadcasts a set of commitments C; = g% for j = 0,...,t, where ag = sk.
Each participant P;, upon receiving their share f(i), can then verify its correctness by
checking the following equation:

t

D =TJ(Cy)" (mod q) (2)

=0

Appendix A.3 Multiplicative shares to Additive shares (MtA)

Suppose Alice and Bob hold two secrets a,b € Z, respectively, which we can think of
as multiplicative shares of a secret = ab (mod ¢). In the following, we will learn how
both parties can get random additive shares a and 3, respectively, such that o+ g = ab
(mod q).

We assume that Alice is associated with a public key E 4 for an additively homomor-
phic scheme over an integer N (Paillier cryptosystem), where E 4(.) denotes the encryption
algorithm using public key A.

The protocol:

1. Alice sends c4 = E4(a) to Bob.

2. Bob computes the ciphertext cg = E4(ab + §') (due to the additive homomorphic
scheme), where /3’ is chosen uniformly at random in Z,. Bob sets his share § = —f’
(mod ¢) and sends cp to Alice.

3. Alice decrypts cp to obtain o' and sets a = o/ (mod ¢q).

Appendix A.4 Threshold signature scheme
Appendix A.4.1 ECDSA signing

The Public Parameters consist of a cyclic group G of prime order ¢, a generator g for G,
a hash function H : {0,1}* — Z,, and another hash function H' : G — Z,.

There is a private key chosen uniformly at random in Z,, and a public key y = ¢*
computed in G. To sign a message M, the signer computes m = H(M) € Z,, chooses k
uniformly at random in Z,, and computes R = ¢* " in G and r = H'(R) € Z,. Then she
computes s = k(m —+ zr) (mod ¢). The signature on M is the pair (r, s) which is verified
by computing R’ = g™ ' (moda)yrs™ (mod 9) iy G and accepting if H'(R') = r.

We'll learn how to jointly compute the signature (7, s) by using additive shares of it
distributed among participants. The technical complication here comes from having to
jointly compute R (which requires raising g to the inverse of a secret value k) and to
compute s which requires multiplying two secret values k, x.

Appendix A.4.2 Key generation protocol

Phase 1 Each Player F; selects k;,v; € Z, and broadcasts a commitment to g along
with their Paillier public key E;.

Phase 2
1. Each P, decommits, revealing ¢7.

2. Using Feldman’s VSS, P; splits gamma; into n (t,n) Shamir shares and sends each
player their share.

3. Every player collects one share from each P; and adds them all up to get their final
share x;.

4. The resulting values z; are a (t,n) Shamir’s secret share of the secret key z =). ;.

5. The public key is set to [[, g7 = ¢”.

Appendix A.4.3 Signature Generation

We assume that ¢+ 1 participants are involved in the signing protocol, as this is sufficient
for it to work, although the protocol can also handle larger groups.

Each participant converts their Shamir share, z;, to additive shares, w;, using La-
grangian coefficients. w; = \; g(x;), L.e.,, v =Y w;.

Phase 1
1. Define k = > k; and v = > ;.

2. Note, ky =), ; kiv; (mod ¢) and kx =}, ; kyw; (mod g).
Phase 2

1. Every pair of players P;, P; runs MtA with shares k;,~y; respectively to work on
ki = uj + Bij. At the end, P; ends up with 0; = ki + >0, iy + 2252 Bias
which is the additive share of ky = > d;.

2. Similarly, running MtA on k;w;, they end up with oy = kywi 4+, pig + > Vi
which is the additive share of kz =) o;.

Phase 3 P, broadcasts §; and the players reconstruct 6 = »_d; = kvy and compute
67! (mod q).

Phase 4 Using every player’s decommitment, the players compute R = [[[, g%’](s_1
g* " =g and r = H'(R).

Phase 5 Each player P; sets s; = mk; + ro;. Then s = > s, = > (mk; + ro;) =
my ki +rY 0, =mk+rkx =k(m+ zr).

The signature (r,s) is generated without exposing either the private key x or the
nonce k to any single party, and without reconstructing those values. From this point,
the signature is complete and can be used in the standard way.

Appendix A.5 Note

Additional security measures like range proofs, extended Phase 5 for checking invalid
signatures from any adversary, and some more ZK proofs are implemented in the full
protocol but are beyond the scope of this document.

	Introduction
	Problem Statement
	Bridge Protocol Overview
	What is a {t, n}-threshold ECDSA scheme?
	What is a TEE?

	Solution Overview
	BitcoinBridge.app Achievements
	Threshold ECDSA Mathematical Details
	Shamir secret sharing
	Feldman’s verifiable secret sharing (VSS)
	Multiplicative shares to Additive shares (MtA)
	Threshold signature scheme
	ECDSA signing
	Key generation protocol
	Signature Generation

	Note

